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Abstract—Quantum computing has exhibited remarkable ad-
vancements in recent years. On superconducting quantum chips,
physical qubits are interconnected with limited coupling topolo-
gies. Since two-qubit gates can only be operated between adja-
cent qubits, quantum circuits must undergo transformation to
satisfy these connectivity constraints—a process known as qubit
mapping and routing. Dynamic quantum circuits represent a
critical paradigm in quantum computing, which features mid-
circuit measurements and conditional control flows (controlled
sub-circuits) based on measurement outcomes. A distinctive
challenge arises when controlled sub-circuits are determined only
after measurement results become available (online acquisition).
Thus, mapping and routing dynamic quantum circuits presents
complex challenges, including managing the conditional execution
of controlled sub-circuits, accommodating their online/offline ac-
quisitions, and resolving mapping misalignments between circuit
segments. In this work, we propose a comprehensive framework
for transforming and executing dynamic quantum circuits. In
this framework, we present a mapping and routing algorithm
Sword that effectively reduces the quantum processing time of
quantum circuits, which applies SWAP(s) With Occupancy and
gate Regional Density. For online scenarios, we introduce a fast
variant Sword—-fast that significantly improves transformation
efficiency with negligible performance degradation. Experimental
evaluations demonstrate that our framework achieves an average
37.1% reduction in end-to-end wall-clock time compared to
baseline approaches for offline scenarios. In online scenarios,
our framework achieves 59.2% average reduction of end-to-
end wall-clock time, demonstrating 2.6x average speedup in
transformation time and 30.0% average reduction in quantum
processing time. By replacing the qubit mapping and routing
algorithm in our framework with a fast variant, Sword-fast,
we achieve a 9.6x average speedup in transformation time
compared to the standard version.

Index Terms—Quantum computing, Mapping and routing,
Dynamic quantum circuit.

I. INTRODUCTION

Quantum computing has experienced rapid development
since its initial proposal. Multiple quantum algorithms are
proposed for key tasks such as quantum simulation [1]], large
integer factoring [2] and database searching [3]]. To implement
quantum algorithms, it must be transformed into quantum
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circuits for execution on specific devices. A quantum circuit
is a computational routine that consists of quantum oper-
ations and real-time classical computation. Currently, most
quantum circuits are relatively simple, typically comprising
qubit initialization, quantum gate operations (including single-
qubit and multi-qubit gates), and final measurements. Al-
though these universal circuits have been widely applied in
practice, they are insufficient for dynamic applications such
as quantum teleportation [4], long-range entanglement gener-
ation [5], quantum error correction [[6], and the measurement-
based model of quantum computing [7]], which require mea-
suring specific qubits in the middle of quantum circuit and
controlling the subsequent execution (we call this controlled
sub-circuits, the whole circuits as dynamic circuits). Recent
studies have utilized dynamic circuits to achieve better per-
formance compared to conventional quantum circuits. For
example, dynamic circuits have been applied to enhance the
Quantum Fourier Transform (QFT) [8] and Quantum Phase
Estimation (QPE) [9], reduce the depth of conventional circuits
while improving fidelity [10], link two quantum chips to
function as a single unit [11]], and prepare high-fidelity magic
states [12]. Dynamic quantum circuits with complex controlled
sub-circuits transcend simple feedback models [13]], offering
significant potential for quantum computing.

For the implementation of dynamic quantum circuits, it
is necessary to transform them into a form compatible with
hardware, as is the case for conventional serialized quantum
circuits. This process is known as qubit mapping and routing.
For example, on superconducting quantum hardware, circuits
must satisfy the connectivity constraints, which means that
a two-qubit gate can only be applied between qubits that
are directly coupled. Conventional mapping approaches often
focus on the performance of circuit execution: reducing the
number of gates or minimizing quantum processing time of
circuit on quantum hardware, as well as improving circuit
fidelity [14], [15], [16], [17], [18], [19].

These conventional approaches assume a static circuit struc-
ture, where the entire transformation is performed once before
execution. However, in dynamic quantum circuits, both the
execution of a controlled sub-circuit and the number of times
it is executed are uncertain. Conventional mapping approaches
fall short in supporting DQCs for two major reasons. Firstly,
they lack support for dynamic control flow: by assuming a
predetermined sequence of gates, they cannot maintain consis-
tent mappings when conditional branches converge. Secondly,
they lack scenario differentiation: when controlled sub-circuits
vary or arrive in real time based on measurement results [13],
[20], mapping processes must be extremely efficient due to
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limited coherence times. We distinguish between online (re-
quiring real-time performance) and offline scenarios (without
time constraints). Offline scenarios prioritize reducing qubit
interaction latency on the quantum hardware (effectiveness),
while online scenarios demand low-latency compilation dur-
ing runtime (efficiency). Neglecting this distinction leads to
suboptimal result.

However, addressing these challenges for DQCs on near-
term quantum hardware introduces a critical timing conflict.
The coherence times of current superconducting qubits are
typically in the range of tens to hundreds of microseconds.
In contrast, the classical compilation (transformation) time
required for non-trivial sub-circuits in an online scenario can
consume more than one millisecond. This reality underscores
the necessity of developing an execution framework for dy-
namic quantum circuits targeting offline and online scenarios.
First, for offline scenarios, where all circuit branches are
known beforehand, transformation time does not interfere
with quantum execution. In this context, the primary goal
remains the optimization of the final circuit’s effectiveness
(i.e., minimizing quantum processing time). Second, for online
scenarios, by developing a systematic framework and highly
efficient heuristic algorithms, it is necessary to build an
essential compilation infrastructure that will become increas-
ingly practical as quantum hardware evolves—either through
significantly extended coherence times [21]], [22], [23]] or the
development of low-latency classical control systems [24],
[25]], [26].

Therefore, dynamic quantum circuits require more than a
conventional mapping technique. It is necessary to address
challenges such as branch execution arising from execution-
flow uncertainties and the different optimization priorities
of compilers across scenarios. It necessitates a system-level
solution that integrates circuit execution with mapping.

With these distinct requirements and current hardware lim-
itations, this work presents a framework designed to manage
DQC transformation and execution across both offline and
online scenarios. In this framework, we propose Sword,
which achieves SWAP(s) With Occupancy and gate Regional
Density, as a method for efficiently optimizing the quan-
tum processing time of dynamic quantum circuits in large-
scale quantum devices with connectivity constraints. We first
analyze the execution characteristics of dynamic quantum
circuits and propose an efficient transformation framework
tailored to their intermediate measurements in online or offline
scenarios. Based on this framework, we reduce quantum pro-
cessing time by incorporating occupancy of hardware qubits
and gate density of quantum circuit during processing. Next,
we analyze existing heuristic mapping methods and observe
that their consistent preference in SWAP selection of short-
est path between qubits. With this observation, we provide
Sword-fast, which prunes the search space thereby sig-
nificantly reducing transformation time. Finally, for mapping
alignment, we propose acc-Miltzow, which modifies the
original 4-approximation token-swapping algorithm [27], by
modifying the selection process from choosing multiple SWAP
operations per iteration to selecting just one.

Our evaluation results demonstrate significant performance

improvements across various scenarios. For offline scenarios,
our method achieves substantial reductions in quantum pro-
cessing time, up to 46.2%, with an average reduction of 37.1%.
For online scenarios, our method maintains considerable per-
formance with a maximum end-to-end wall-clock time reduc-
tion of 73.7% and an average reduction of 59.2%. Individ-
ually, our approach achieves an average quantum processing
time reduction of 30.0%, while simultaneously achieving a
2.6x average speedup in transformation time. The accelerated
variant Sword-fast of our algorithm exhibits considerable
computational efficiency, achieving a 9.6x average speedup
in transformation time. Furthermore, our optimized mapping
alignment algorithm acc-Miltzow effectively addresses
mapping alignment challenges, reducing both the transforma-
tion time required for alignment resolution by 56.4% and the
average depth of the resulting circuits by 11.0%, respectively.

The rest of this paper is organized as follows. Section [[] first
briefly introduces quantum computing, then formally describes
qubit mapping and routing problem for dynamic circuit. Sec-
tion [III] specifically describes the algorithmic process of our
method and the optimization strategies. Section [[V] provides an
evaluation of our method. We conclude this work with future
directions in Section [V

II. PRELIMINARIES
A. Quantum computing

Dynamic Quantum circuit. In contrast to serialized quan-
tum circuit, dynamic quantum circuit incorporates mid-circuit
measurements—either measuring a subset or all qubits—and
operations based on outcomes of these measurements. These
operations primarily include loop and conditional blocks,
which we refer to as the sub-circuits of quantum control flows
(hereinafter referred to as controlled sub-circuits in this paper,
conditional and loop sub-circuits for conditional and loop
blocks, respectively), while the remaining execution blocks are
designated as the only one main circuit. The execution proce-
dure of a dynamic quantum circuit is determined by the spe-
cific algorithm or scenario. For instance, the adaptive dynamic
QAOA circuit measures all qubits and determines the next exe-
cution circuit based on the measurement results [[13]]; similarly,
quantum loop circuits [28] decide whether to execute the next
loop or continue to the main circuit based on the measurement
outcomes. Generally, the algorithm and application scenar-
ios dictate the method of acquiring controlled sub-circuits,
whether they are obtained offline (the controlled sub-circuits
are fully known before execution) or online (the corresponding
controlled sub-circuits can only be obtained after measurement
results are obtained). At present, dynamic quantum circuits
are simplistic in practice; however, as quantum applications
evolve and scenarios become increasingly complex—such as
in distributed quantum computing—dynamic quantum circuits
that incorporate complex controlled sub-circuits are expected
to become more prevalent.

Superconducting quantum chip. Superconducting qubits can
perform gate operations within nanoseconds. Superconducting
quantum chips are typically two-dimensional and often exhibit
regular configurations. In addressing the quantum mapping and
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Fig. 1: Dynamic quantum circuit, its DAG representation and its execution procedure, whether the operations of the dashed
box in (a) will be executed is determined by the measurement results of qubit gy. (b) and (c) represent the execution flows of
the dynamic quantum circuit in (a) on a one-dimensional chain-like chip, respectively, where the sub-circuit is executed (as
shown in (b)) and not executed (as shown in (c)). Q); denotes physical qubits, and ¢; denotes logical qubits. In (d) and (e), the
circles means two-qubit gates in (a), the solid arrows refer to the quantum data dependencies between gates, and the hollow

arrow means the transmission of classical data.

routing problem, these architectures are generally represented
as undirected graphs [29], [30], [L5]. Along with the variety
of execution time for gates operated on different qubit(s), our
work accounts for gate execution times.

Qubit mapping and routing for dynamic quantum cir-
cuit. When designing quantum algorithms, it is commonly
assumed that gate operations can occur between any two
qubits. However, hardware connectivity limitations necessitate
the transformation of the original quantum circuit into one that
conforms to the actual device’s constraints. The primary goal is
to facilitate circuit execution, starting with mapping the qubits
in the circuit to the physical qubits on the chip (mapping). This
is followed by inserting SWAP gates to enable the execution
of two-qubit gates on non-directly connected qubits (routing).
Collectively, this is known as qubit mapping and routing (the
corresponding solver for this circuit transformation is called
mapper throughout this paper).

In dynamic quantum circuits, due to the uncertainty in the
execution of controlled sub-circuits, the execution and map-
ping of the quantum circuit are highly coupled. When mapping
a quantum circuit, the execution flow of the circuit needs
to be considered. Considering the circuit shown in Fig.
we execute it on a one-dimensional chain hardware and must
consider both cases: if the sub-circuit is skipped (Fig[Ic), only
gates go, g1, gs. and g¢ are applied; if executed (Fig. [Ib),
additional SWAPs are needed, e.g., between 3 and @4 after
go and before gs. Although g5 is outside the sub-circuit,
previous execution alters the mapping and correspondingly

changes the subsequent routing. To maintain consistency, an
extra SWAP before g5 ensures mapping alignment, making
later routing independent of sub-circuit execution.

B. Problem formulation

This work, with particular emphasis on dynamic quantum
circuits, addresses the heterogeneity among qubits in real
quantum devices by proposing an optimization approach that
jointly considers quantum processing time and transformation
time of qubit mapping and routing to optimize the end-to-end
wall-clock time of execution of circuits.

We consider the dynamic quantum circuit C, which consists
of n qubits (denoted as @).) and exclusively employs CNOT
gates as two-qubit gates. This circuit is modeled as a Directed
Acyclic Graph (DAG), where vertices represent quantum gates
and edges depict their dependencies, as illustrated in Fig. [Id]
The depth of the circuit is calculated by the length of the
critical path of the DAG. For a quantum chip with m qubits
(where m > n), represented as G = (Qq, E, W), Qg4 denotes
the qubits and FE represents the couplings. Considering the
variability of CNOT gates, we use the weight function W :
E — R to indicate execution times for each CNOT gate.

For real-world implementation of dynamic quantum circuits,
the execution procedure can also be represented as a DAG,
while each node in this DAG denotes a set of operations
(classical or quantum) and consumes a certain amount of
time. We define the end-to-end wall-clock time Tgog as the



maximum total time consumed by nodes along the critical path
of this DAG. We have a mapping function 7 = f : Q. — Qg,
mapping the input quantum circuit’s qubits Q. to the quantum
chip’s qubits Q4. The execution procedure of input dynamic
quantum circuit C' is denoted as Cp, which includes a initial
mapping and the transformed circuits of main circuit and
controlled sub-circuits. As shown in Fig. [I] Fig. [I¢] indicates
the execution scheme of circuit Fig. |lal whose DAG is shown
in Fig.

We introduce the following notation to represent the time

parameters involved in the problem:

e RT (runtime of quantum compilers): the transformation
latency incurred on classical processors.

e Topy (quantum processing time): the physical execution
time of all gates and measurements on the quantum
processing unit (QPU).

e Trop (end-to-end wall-clock time): the total wall-clock
duration from the first gate trigger to the final measure-
ment. For offline scenarios, Trorp = Tpy; for online
scenarios, Trop = Topy + RTsy, where RT,,, refers
to the transformation time of sub-circuits.

Based on the system model defined above, we then define
the qubit mapping and routing problem:

Problem 1. Min-end-to-end wall-clock time qubit mapping and
routing for dynamic quantum circuit.

Input: A dynamic quantum circuit C and quantum chip with
exact topology depicted by G.

Output: An execution procedure Cpy which satisfies chip
connectivity constraints and Tgop is minimized.

Problem Hardness: Min-depth Qubit Routing with initial
mapping, as a formulation for mapping and routing a
serialized quantum circuit is a special case of this problem.
While Min-depth Qubit Routing with initial mapping is shown
to be NP-hard [16l], this problem is NP-hard.

C. Related work

Significant prior work exists in qubit mapping and rout-
ing [15], [16], [17], (181, [30], [31], (32, [33], [34], al-
ternatively referred to as qubit layout, qubit allocation, or
quantum circuit transformation in the literature. These studies
propose diverse solutions that employ either exact or heuristic
approaches while optimizing for various objectives, including
gate count reduction, circuit depth minimization, and fidelity
enhancement.

Molavi et al. [30] formulate the qubit mapping and rout-
ing problem as a MAXSAT instance, demonstrating its NP-
completeness. Wille et al. [31] transform the problem into a
symbolic optimization problem, employing solvers to min-
imize gate counts. Their experimental results quantitatively
characterize the performance gap between heuristic approaches
and theoretical lower bounds. Wagner et al. [35] decom-
poses the mapping problem into two problems: allocation
subproblem and token swapping, improving the efficiency of
solving. Zulehner et al. [32]] adopt gate count minimization as
the optimization objective, implementing a layered quantum
circuit approach with A* search applied per layer. Siraichi et
al. [[18] recast the problem as subgraph isomorphism coupled

with token swapping. Sinha et al. [33]] enhance Monte Carlo
tree search using graph neural networks to optimize circuit
depth, while Pozzi et al. [34]] employ reinforcement learning
tailored to specific chip architectures.

Zhang et al. [15] establish an execution-time-optimized
theoretical model for qubit mapping and routing, proposing
a constrained search framework. Li et al. [17] develop a
heuristic method that efficiently identifies appropriate SWAP
operations, demonstrating scalable performance even for large-
scale quantum circuits. Fu et al. [16] discover two patterns that
degrade conventional greedy methods. Liu et al. [36] proposes
a method for dividing large circuits into smaller circuits and
designs a mapping algorithm for large-scale quantum circuits.
Similarly, Cheng et al. [37] addresses large-scale quantum
circuits by employing limitedly exhaustive search and shortest-
path estimation approach.

In addition, Li et al. [38] propose a mapping scheme that in-
corporates single-qubit gates into the mapping problem. Padda
et al. [39] reduce the depth and gate count by introducing
entanglement during the mapping process. Meanwhile, Huang
et al. [40] consider not only SWAP gates but also the insertion
of BRIDGE gates. Saravanan et al. [41] accounts for hardware
noise during mapping, improving the fidelity of the circuit.
Ji et al. [42] specifically focus on optimizing mapping for
variational quantum algorithms.

While these conventional mapping strategies are effective
for static circuits, they cannot directly address execution uncer-
tainty in DQCs. A naive unfolding of all possible conditional
branches results in exponential growth in circuit number and
compilation overhead, making such approaches impractical for
real-world DQCs.

To support dynamic quantum circuits, Cross et al. [43]
propose the OpenQASM 3. Qiskit [44] provides a basic frame-
work that transforms controlled sub-circuits independently
before integrating them via mapping alignment for dynamic
quantum circuit. However, their approaches do not differentiate
between online and offline scenarios, consequently lacking
specialized optimization strategies.

A critical challenge is the mapping alignment problem—the
process of converting logical-to-physical mapping of qubits
into target mapping through SWAP gate insertion. This prob-
lem can be formulated as a token swapping problem: given
an undirected graph representing hardware topology (vertices
as physical qubits and tokens as logical qubits), the objective
is to route all logical qubits to their target physical locations
via adjacent token swaps (SWAP gates). Previous work [27]],
[45]], [46] prove the complexity of this problem, with Miltzow
et al. [27] developing a 4-approximation algorithm.

III. SYSTEM DESIGN

In this section, we present a framework for transforming
and executing dynamic quantum circuits.

Design insights: Based on our analysis of the execution
scheme for dynamic quantum circuits, we propose a compre-
hensive framework three challenges: effectiveness (quantum
processing time), efficiency (transformation time) and map-
ping alignment. This framework balances the effectiveness



(quantum processing time) and efficiency (transformation time
of circuits with classical hardware) with several optimization
strategies. Firstly, we introduce Sword, which achieves SWAP
optimization with occupancy and gate regional density, an
approach to solving the qubit mapping and routing problem.
Secondly, to improve efficiency to satisfy the time constraints
for transformation time, we develop Sword-fast, applying
a search space pruning strategy based on mapping and routing
results analysis. Moreover, we provide a mapping alignment
algorithm acc-Miltzow to better accommodate the require-
ments of dynamic sub-circuits, achieving simultaneous reduc-
tions in both transformation time and quantum processing
time. The overall framework is shown in Fig.

A. Overall Framework

Dynamic quantum circuits introduce mid-circuit measure-
ments and the controlled sub-circuits based on these measure-
ments. While the quantum processing time of circuits must
also be considered, these distinctive characteristics introduce
novel challenges to qubit mapping and routing, including
mapping misalignment between circuit segments (main circuit
or controlled sub-circuits) and efficiency requirements for
circuit processing. Consequently, there is a critical need for
methodologies that effectively and efficiently address these
challenges, adapting to the execution paradigm of dynamic
quantum circuits.

A straightforward strategy for processing a dynamic quan-
tum circuit involves enumerating all possible execution paths
for each conditional branch (e.g., whether the conditional sub-
circuits will be executed). However, this strategy requires the
exponential resource growth with the number of controlled
sub-circuits increasing. An alternative approach involves just-
in-time (JIT) processing, triggered by mid-circuit measurement
outcomes to determine how the controlled sub-circuits be exe-
cuted. JIT processing approach introduces latency in quantum
hardware execution while waiting for the results of the circuit
transformation, thereby consuming valuable hardware time,
i.e., the limited lifetime of qubits.

As shown in Fig. 2l we propose a comprehensive execution
framework for dynamic quantum circuits in offline and online
scenarios that comprises three essential components: circuit
segmenting, main circuit processing, and controlled sub-circuit
tailoring across various scenarios. The detailed explanation is
listed as follows:

o Circuit segmenting: partitioning the dynamic quantum

circuit into a main circuit and sub-circuits;

e Main circuit transformation: processing the main circuit
to generate both the transformed main circuit and initial
mappings of qubits for sub-circuits;

e Sub-circuit processing: sequentially transforming each
sub-circuit (performing real-time transformation during
execution in online scenarios) while performing mapping
alignment to generate transformed sub-circuit.

We show a simple example to illustrate the procedure
of our framework in Fig. The example considers two
scenarios: offline (sub-circuits are known prior to execution),
and online (sub-circuits are determined only during execution

based on measurement outcomes). The unitary Us constitutes
a conditional sub-circuit whose execution depends on the
measurement outcome of qubit qg.

Additionally, the term m; in Fig. [3a] denotes the mapping
from qubits in circuit to physical qubits on hardware after
circuit segments are executed. When the condition is satisfied
(sub-circuit will be executed), after the controlled sub-circuits
U, executed, the mapping from qubits in circuit to physical
qubits will be changed from 7 to 7. This resulting mapping
w1 of Uy is then used as the initial mapping for the subsequent
part Us of main circuit. Conversely, when the condition is
not satisfied (sub-circuit will not be executed), the U3 block
inherits the original mapping my directly. Thus, mappers
must consider the mapping misalignment introduced by the
conditional execution of the sub-circuits.

Controlled sub-circuits known (offline): As shown in Fig.
our framework segments the original dynamic quantum
circuit into two types of components: the two parts U
and Uz of main circuit, and the controlled sub-circuits Us.
Each component undergoes independent transformation. The
processing of the controlled sub-circuit Us is through a two-
stage procedure. First, Us is transformed with initial mapping
o, after which mapping alignment is applied to align the final
mapping of qubits to the initial mapping. The end-to-end wall-
clock time is given by Trop = Tpy, representing the sum
of the execution times of U;,Us,Us on the hardware.
Controlled sub-circuits unknown (online): As shown in Fig.
our approach behaves similar to the offline version, with
the key distinction lying in sub-circuits processing, due to
the online arrival of controlled sub-circuit Us. The approach
begins with segmenting the original quantum circuit into
main circuit and controlled sub-circuits. The main circuit
is processed offline, while the processing of U, is dynami-
cally determined during execution. The end-to-end wall-clock
time is given by Trorp = Topy + R1syy, which additionally
includes the transformation time of Us.

Building upon this framework, we introduce three optimiza-
tion approaches specifically designed to address the mapping
and routing challenges inherent in dynamic quantum circuits,
which are listed as follows:

« Effectiveness enhancement in mapping and routing:

The effectiveness of qubit mapping and routing, remains
a paramount consideration in quantum computing, as
demonstrated by extensive prior research focusing on
optimization metrics including gate count reduction [[17],
[32] and quantum processing time minimization [135],
[L6]. Within our framework, we target the minimization
of end-to-end wall-clock time as our primary optimiza-
tion objective. We propose a novel heuristic function
for SWAP gate selection, which demonstrates significant
reduction in quantum processing time.

« Efficiency promeotion in mapping and routing: Opti-
mization of mapping and routing efficiency is particularly
critical in scenarios where sub-circuits are dynamically
determined by measurement outcomes during execution.
Consequently, the processing time for mapping and rout-
ing on classical hardware significantly impacts the over-
all execution performance of dynamic quantum circuits.
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Through systematic observation and analysis of serialized
circuit routing outcomes, we develop an efficient prun-
ing methodology. This approach prioritizes operations
based on a strategic sorting algorithm that evaluates both
quantum gates within the circuit and candidate SWAP
operations, resulting in substantial enhancement of circuit
mapping and routing efficiency across diverse quantum
architectures.

« Mapping alignment optimization: It represents a critical

this approximation approach fails to adequately address
the primary objective of optimizing quantum processing
time. To overcome this limitation, we introduce an en-
hanced token swapping algorithm acc-Miltzow with
an efficient SWAP selection strategy specifically designed
for optimizing the quantum processing time. Our evalua-
tions demonstrate that this modified approach achieves
significant improvements in both quantum processing
time effectiveness and computational efficiency compared
to the original 4-approximation algorithm.

B. Main algorithm

We propose three optimization schemes for mapping and
routing dynamic quantum circuits in offline and online sce-
narios. We utilize a qubit mapping and routing algorithm with
a refined heuristic routing function to efficiently tackle this
task. First, when designing the heuristic routing function, we
integrate hardware information and characteristics of circuits
to reduce the quantum processing time (enhancing the circuit
execution parallelism), thus reducing end-to-end wall-clock
time. Second, considering time sensitivity in online scenarios,
we focus on balancing effectiveness and efficiency by prun-
ing during routing. Finally, we propose a modified mapping
alignment algorithm acc-Miltzow , which improves the 4-
approximation token swapping algorithm [27]] to suit dynamic
quantum circuits better.

1) Mapping and routing: Our mapping and routing al-
gorithm, Sword, which applies SWAP(s) with occupancy
and gate regional density, employs a two-step process: pre-
processing, and the mapping and routing procedure. First,
the input quantum circuit C' is converted into a directed
acyclic graph (DAG), denoted as G4, and the shortest path
between any two qubits on the chip is precomputed as D;;.
We restrict candidate SWAP operations to those associated
with qubits involved in gates within the front layer F', which
consists of two-qubit gates whose predecessors have already



Algorithm 1: Sword

1 Input: Circuit C, chip G, initial mapping mrpit;

2 Qutput: Resulting circuit C\yy;

3 Transform C to DAG (4, calculate distance matrix
Dy

4 Initialize front layer F' and extended layer F, set
Cout — (Z);

5 Execute all executable gates in F' and update F', E
and add the executed gates to Cly¢;

¢ while F' is not empty do

7 Candidate SWAP set S <+ GetCandidateSWAPs();

8 Density p < |F‘

9 if p > r then

10 minScore <+ +oo;

11 while True do

12 Sopt <— arg mingeg score(s);

13 if score(sopt) < minScore then

14 Append s, and all single-qubit gates

not affecting Sopt t0 Coyts

15 minScore < score(Sopt);

16 update S;

17 else

18 | break;

19 else

20 Sopt <— argmingeg score(s);

21 Append s, and all single-qubit gates not
| affecting s5,p; to Coyt;

22 Append all executable gates to C,,; and update F'
and F;

23 Return C,;

been processed. From these candidates, we select the most
suitable SWAP(s). Additionally, we dynamically adjust the
SWAP selection strategy based on the circuit’s regional gate
density p. We define this density as the ratio of the number
of two-qubit gates in the front layer F' to the total number of
qubits n (i.e., p = |F'|/n ). This value is then compared against
a predefined threshold, r, to switch between a parallel or a
sequential SWAP selection strategy. A higher density suggests
that a parallel approach may yield better performance. Given
an input quantum circuit C, an initial mapping 7y, and the
quantum chip’s topology graph G, our algorithm produces a
transformed circuit that adheres to the connectivity constraints
while minimizing the quantum processing time. The pseudo-
code is presented in Algorithm [I] with further details provided
below:

Pre-process (line 3~5): Firstly, we convert the quantum
circuit C into a directed acyclic graph (DAG). Then, the
shortest path matrix D;; is then computed using the Floyd-
Warshall algorithm [47]. Next, the front layer F' is initialized.
Simultaneously, the extended layer E is initialized, which
comprises two-qubit gates in the subsequent layer(s) of F'.
Get candidate SWAPs (line 7): If F' is not empty, identify
candidate SWAP set S. For each qubit involved in gates of

F, it can be swapped with any of its adjacent qubits on the
quantum chip G. The set S of all possible SWAP operations
between these qubits and their neighbors forms the candidate
SWAP set. If the front layer F' is empty, terminate the SWAP
selection process and return the routing result Cl,;.

Select SWAP(s): Get the current circuit density p (line 8), if:

(1) p > r: employ the SWAP combinations selection strat-
egy. Initialize the score to a sufficiently large value (line 10).
Iterate over the candidate SWAP set S and select the optimal
SWAP that maximizes the score reduction if the SWAP is
applied (line 12). Append the SWAP to C,,; (line 14) and
remove from the candidate SWAP set all elements that share
qubits with the selected SWAP (line 16). Repeat the process
until no further score-reducing SWAP exists.

(2) p < r (line 19~21): employing the one by one SWAP

selection strategy. Select the SWAP operation from the candi-
date set that yields the lowest score when applied, then append
it to Cou,t-
Update (line 22): Remove all executable gates from the DAG,
and update front layer F' and extended layer(s) E accordingly.
Append these executable gates to Cy,, then return to getting
candidate SWAPs (line 7).

In the routing process, it is necessary to evaluate the impact
of candidate SWAPs. Therefore, we build upon common
features from existing heuristic functions to assess whether the
total remaining distance decreases after applying the SWAPs.
The general formula expression for this evaluation is as

follows:
Z DU + wp ok — Z ng, (])

(qi,9;)€F (qi,9;)€E

where F' represents the set of nodes with a zero in-degree in
G4, E denotes the set of nodes from the preceding layer(s) of
the DAG, excluding those in F'. The pair (g;,g;) represents
a node in DAG G/, indicating that a two-qubit gate must be
executed between the physical qubits g; and g;. D;; means
the shortest path matrix of qubits on hardware. The parameter
w1 serves as a weight factor to balance the influence of the
front layer F' against entended layers F.

Sword extracts information from the physical qubits’
occupancy. The occupancy will change during the routing
process. When selecting SWAPs, our algorithm integrates
these information into a coefficient that multiplies the score
from Eq. (2), serving as our heuristic function. Furthermore,
our algorithm considers the characteristics of the circuit, par-
ticularly the density of two-qubit gates. We explore the SWAP
selection strategies of one by one and SWAP combinations,
analyze the impact of density, and propose an adaptive strategy
selection method to further reduce the overall circuit depth and
quantum processing time.

Heuristic function: To construct an appropriate heuristic
function to estimate the impact of SWAP s, we provide a
more detailed characterization of the occupancy, allowing our
approach to better utilize this state information of qubits on
the chip. The expression of our heuristic function is:

max O(g;) — min O(g:)

=d * (1 4wy * - ),
O(qi) — O(qi
negOla) — 1 0@)

score(s)

2



where O(g;) represents the operation time that a qubit ¢; is
occupied. The parameters wo is weight factor that controls the
penalty for selecting SWAPs involving highly occupied qubits.

This formulation implies that SWAP operations involving
highly occupied qubits will not be selected, despite potentially
offering significant reductions of average remaining distance
(d). Instead, our method tends to select SWAPs acting on lower
occupied qubits. Consequently, our algorithm prefer to choose
a path with less execution time.

And the updated O’ after any gate execution is:

O'(q;) = I;}ggO(Qi) +T(9), Vg, € g. 3)

while 7 (g) denotes the time required to execute a gate g.
Occupancy of qubits on the chip. Considering the qubits’
occupancyduring the routing process is crucial. Previous
work [17] introduce a similar concept as decay; however,
their formula adds a fixed value for each executed SWAP
and frequently resets these values to 0. Although this method
behaves effectively in practice to some extent, it fails to
accurately reflect and utilize the qubits’ occupancy effectively.
As the routing progresses, the number of gates, including
SWAPs, executed on different qubits vary, leading to fluctu-
ations in occupancy. As illustrated in the Fig. 4] if a CNOT
operation is required between (J; and (Q3, the start time of
the SWAP between Q2 and Qs, i.e., O(Q2), is earlier than
the one between Q1 and Q2 (O(Q1)). Thus, the target CNOT
operation will be earlier executed if we choose the SWAP
between Q2 and Q3.

@
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Fig. 4: Example of qubits’ occupancy: (a) the topological
architecture of a quantum device, and (b) the corresponding
qubits’ occupancy during quantum circuit execution.

Qubit

Regional Gate density impact: It is crucial to consider both
the characteristics of the quantum chip and the regional gate
density of the circuit. Circuits with the same depth may exhibit
considerable variance in gate count, especially two-qubit gates
(we use gate density p to describe this variance). Gate density
can vary not only across different circuits but also within
one circuit across multiple layers. Some regions of the circuit
are dense, while others are relatively sparse. Our method

adaptively chooses between the SWAP combinations and
one by one SWAP selection strategies based on the current
gate density during the routing process. Consequently, when
calculating the circuit’s density, we consider only the front
layer’s information, i.e., two-qubit gates in F'. The density is
expressed as p = |F|/n, where |F| represents the number
of two-qubit gates in the front layer and n denotes the total
number of qubits in the circuit. If p exceeds a defined threshold
r, the SWAP combinations selection strategy is applied; oth-
erwise, the one by one strategy is employed. r is empirically
set to 0.25 in our evaluations.

2) Transformation time reduction: The greedy heuristic
approach operates by iteratively selecting the suitable SWAP
operation(s) from a candidate set during each algorithm iter-
ation. A key determinant to promote algorithmic efficiency is
the reduction in the number of candidate SWAP operations
evaluated per iteration. Certain heuristic methods achieve this
by constraining candidate SWAPs to those gates in front layer
F'. Our theoretical analysis and experimental results reveal
that current candidate SWAP selection strategies still possess
substantial optimization potential.

From the standpoint of heuristic function design, applicable
to both our method and SABRE [17], the fundamental princi-
ple remains unchanged: a SWAP operation that decreases the
distance between two qubits participating in a two-qubit gate
is preferred. For any specific two-qubit gate, the shortest path
between the corresponding physical qubits in the hardware
topology naturally constitutes an optimal sequence of such
preferred SWAP operations. This inherent property leads to a
clear preference in practical qubit mapping and routing: SWAP
operations that reduce inter-qubit distances are significantly
more likely to be selected than those that increase them.

TABLE I: Proportion of two types of SWAP.

Benchmark name SABRE Sword
In-path  Out-of-path  In-path  Out-of-path
adder_n118 63.8% 1.8% 59.7% 4.2%
cat_n130 86.5% 1.3% 82.7% 1.9%
ghz_n127 86.5% 1.3% 82.3% 2.0%
ising_n98 92.0% 1.9% 87.2% 7.1%
knn_129 73.0% 2.0% 48.3% 3.8%
multiplier_n75 50.5% 1.7% 51.4% 1.3%
qft_n63 63.4% 1.5% 61.0% 0.7%
qugan_nl11 50.6% 3.2% 50.9% 3.2%
swap_test_nl15 70.2% 0.9% 55.6% 4.6%
wstate_n118 66.4% 1.2% 81.7% 1.3%

Our experimental results validate this finding through a
comparative evaluation of SABRE and our proposed method.
We categorize a SWAP operation as “In-path” if it lies on
the shortest path between the two qubits of its corresponding
two-qubit gate; otherwise, it is classified as “Out-of-path”.
Using benchmark circuits from QASMBench [48]], a widely
used quantum circuit benchmarks, we statistically analyze the
distribution of In-path versus Out-of-path SWAP selections. As
shown in Table|[l} both methods demonstrate minimal selection



Algorithm 2: acc-Miltzow

1 Input: Chip G, origin mapping m;, target mapping ¢;
2 Output: SWAP sequence S;

38+ 0

4 while True do

5 swap «— get_swap(G, m;, m);

6 if swap is not None then

7 | S.push(swap);

8 else

9 happychain < get_chain(G, m;, m¢);
10 if happychain is not None then
1 | S.push(happychain);

12 else

13 L break;

14 | Apply swap or happychain in 7;;

15 Return SWAP sequence S.

of Out-of-path SWAPs while maintaining a strong preference
for In-path SWAPs. Notably, the cumulative percentage of In-
path and Out-of-path SWAPs does not reach 100% because
some SWAPs may lie on the shortest path for one gate but
not for the other.

Therefore, we propose a transformation time optimization
method: For each two-qubit gate in the front layer F', we
take one qubit of its two qubits as an example (we call the
other a partner qubit). We sort the potential SWAP operations
associated with this qubit in ascending order by the distance
to the partner qubit after the SWAP applied. Only a part
of the SWAPs are considered lately, after applied which the
distances between the qubit and its partner qubit are less.
While this approach resembles the routing heuristics above,
it offers computational efficiency by requiring only a single
lookup in the precomputed hardware distance matrix. This
evaluation involves only the partner qubit rather than the entire
front layer F' and extended layers F.

The core assumption of this method is that qubit routing
paths generally follow the shortest paths, which holds true
in most but not all cases. To mitigate this limitation, we
incorporate suboptimal paths in practical implementations. In
our evaluation, we apply this approach by ranking potential
SWAP operations and selecting the top 50% part as candidate
operations.

This offers an alternative perspective on the qubit mapping
and routing problem: once routing paths are determined, the
critical task is to prioritize two-qubit gates in the front layer F'.
Thus, we introduce the gate priority based method to further
reducing transformation time.

The conventional approach to generating candidate SWAP
operations involves evaluating SWAP operations linked to all
two-qubit gates in the front layer F'. We recognize that not
all such gates are equally critical. Consequently, we prioritize
these two-qubit gates and initially focus on SWAP operations
associated with high-priority gates.

When computing gate priorities, we restrict our consid-

eration to the first few circuit layers. This design choice
serves two key purposes: (1) it enhances computational ef-
ficiency by limiting the analysis scope; (2) it acknowledges
the diminishing influence differential of front-layer gates on
circuit portions after extended layer(s). Therefore, we modify
our approach by counting only successor gates within the
extended layer E. The priority of each gate in front layer F
increases with its number of successors. After ranking gates
using this metric, we selectively process a subset of front-layer
and corresponding SWAP operations. The number of selected
gates are determined by the gate selection ratio p, which is
empirically set in our experiment.

3) Mapping Alignment optimization: As an application of
token swapping problem, the mapping alignment problem
introduced by dynamically execution of controlled sub-circuits
could be handled with an 4-approximation algorithm [27]. The
4-approximation algorithm employs two atomic operations. A
swap is classified as an “unhappy swap” if, prior to execution,
one token is already in its correct position, and after the swap,
the other token’s distance to its target position decreases. A
sequence of swaps (v1,vs), (v, v3)...(v;, v;41) constitutes a
“happy swap chain” if, upon full execution, the token initially
at v; moves to vy, while the remaining tokens shift from
v; to vj_1, with all swapped tokens reducing their distance
to their target positions. The algorithm iteratively searches
for either happy swap chains or unhappy swaps to execute.
If neither is found, all tokens are correctly positioned, and
the algorithm terminates. However, this method lacks inherent
parallelism optimization, while the computational procedure
for identifying happy swap chains is not efficient enough.

We propose acc-Miltzow, adapting the original to-
ken swapping algorithm to improve both parallelism and
efficiency by restricting selection to one SWAP per step.
acc-Miltzow operates as follows: in each iteration, it first
attempts to search either a happy swap or an unhappy swap.
If neither is available, it then searches for a happy swap
chain. The algorithm terminates when no further operations are
applicable. Since a single happy swap inherently qualifies as a
happy swap chain [27], this adaptation ensures the algorithm’s
completeness while maintaining solution validity. The pseudo-
code is shown in Algorithm[2] A detailed explanation is listed
as follows:

« Firstly, we initialize the return result Swap sequence S
as empty (line 3);

« Then, we iteratively attempt to find either a happy swap
or an unhappy swap (line 5~7);

o If no suitable swap is found, we then attempt to seach a
happy swap chain (line 9~11). If no such chain exists,
the loop terminates (line 13) and return the results of
SWAP sequence S.

o At the end of each iteration, the identified swap or swap
chain is applied to update the current qubit mapping 7;
(line 14).

IV. EVALUATION

We evaluate the performance of our proposed method
using benchmark dynamic quantum circuits generated by



TABLE II: Main results.

Benchmark name! Baseline Ours offline” Ours online?

N*  Topy'ms) RTup*ms)  RTpu'ms) | N Topu (ms)  RTpuu (ms)  Argp, | N Tory (ms)  RTgup (ms)  Argp,  speedup  Arp,p
QC10-S05-D10-K2 | 72783 0.66 81.88 155.10 79386 0.36 594.20 46.2% 78750 0.36 21.38 45.6% 38 73.7%
QC10-S05-D10-K3 | 79335 0.76 144.75 218.92 88338 0.44 698.45 42.1% 89943 0.48 40.72 37.3% 3.6 71.7%
QC10-S05-D10-K4 | 111237 1.06 207.89 294.54 125304 0.64 1320.18 39.7% 125694 0.66 69.91 38.0% 3.0 66.2%
QC10-S05-D20-K2 | 119373 0.93 112.23 217.80 151350 0.60 1163.26 352% 144966 0.62 38.96 32.7% 29 65.0%
QC10-S05-D20-K3 | 158520 1.23 210.70 320.11 199767 0.83 1517.91 32.6% 194742 0.99 82.79 19.4% 2.5 60.5%
QC10-S05-D20-K4 | 162435 1.43 228.40 364.58 199368 0.86 1910.08 39.9% 204288 0.98 92.05 31.9% 25 59.5%
QC10-S10-D20-K2 | 109026 0.87 103.40 219.51 139608 0.57 1094.75 33.8% 145980 0.63 31.63 27.6% 33 69.1%
QC10-S10-D20-K3 | 154329 1.30 181.83 327.62 184218 0.76 1405.64 41.3% 178938 0.88 76.62 32.1% 24 57.7%
QC10-S10-D20-K4 | 154518 1.29 223.97 376.52 183762 0.79 1491.72 39.0% 189825 0.90 73.21 30.4% 3.1 67.1%
QC15-S05-D10-K2 | 108000 0.96 111.55 199.40 125661 0.54 983.28 43.5% 123039 0.60 44.99 37.0% 25 59.5%
QC15-S05-D10-K3 | 124353 1.15 164.36 275.62 142062 0.69 1508.12 40.2% 148314 0.76 63.96 34.0% 2.6 60.9%
QC15-S05-D10-K4 | 142503 1.34 195.98 324.08 153342 0.79 1794.83 40.9% 162492 0.88 72.55 34.4% 27 62.8%
QC15-S05-D20-K2 | 178752 1.38 154.35 317.79 232929 0.93 2019.99 32.4% 238602 111 73.76 19.6% 2.1 51.9%
QC15-S05-D20-K3 | 175083 1.39 170.56 339.58 220488 0.89 1612.90 35.9% 214707 0.92 57.57 33.8% 3.0 66.0%
QC15-S05-D20-K4 | 225753 1.82 279.19 479.15 272892 1.16 2237.67 36.2% 277698 1.37 130.00 25.1% 2.1 53.3%
QC15-S10-D20-K2 | 168051 1.29 153.62 339.72 215349 0.89 1779.10 31.1% 216528 0.93 52.74 27.6% 29 65.3%
QC15-S10-D20-K3 | 200184 1.64 207.09 382.37 249924 1.02 1910.72 37.6% 251631 1.18 86.35 27.9% 24 58.1%
QC15-S10-D20-K4 | 221985 1.85 279.28 512.17 266052 1.15 2353.24 38.0% 276846 1.28 106.26 30.6% 2.6 61.7%
QC20-S05-D10-K2 | 123717 1.08 107.63 211.04 150597 0.69 1002.79 36.0% 149376 0.75 39.99 31.2% 27 62.5%
QC20-S05-D10-K3 | 157221 1.42 184.76 298.43 188598 0.90 1587.28 36.7% 191631 1.00 74.53 29.3% 25 59.4%
QC20-S05-D10-K4 | 170568 1.54 246.29 426.00 198858 0.98 1670.53 36.4% 202977 111 97.39 27.9% 25 60.3%
QC20-S05-D20-K2 | 205458 1.53 134.28 337.02 265107 1.05 1893.95 31.1% 264150 1.16 54.70 23.8% 2.5 58.9%
QC20-S05-D20-K3 | 285981 2.20 273.04 492.35 356037 1.45 2532.21 33.9% 360675 1.70 130.68 22.7% 2.1 51.9%
QC20-S05-D20-K4 | 285825 2.19 325.49 538.78 333816 1.36 2443.65 37.7% 347514 1.66 132.37 24.4% 25 59.1%
QC20-S10-D20-K2 | 216669 1.67 148.36 324.60 266790 1.06 2117.60 36.4% 268872 1.19 67.58 28.9% 22 54.2%
QC20-S10-D20-K3 | 237645 1.85 198.70 419.55 295884 1.24 2266.44 32.7% 302220 1.35 93.53 26.8% 2.1 52.7%
QC20-S10-D20-K4 | 253491 2.09 12425 34377 325281 1.34 2521.18 35.6% 321285 1.46 112,99 29.9% 1.1 9.4%

Baseline and Sword are implemented in Rust and C++, respectively.

! The circuit labeled QC10-S05-D10-K2 indicates a depth of 1000, a QUEKO gate density vector of (0.05, 0.10) [14], and a subcircuit count of 2;
2 Qur results are presented as quantum processing time reduction ratio (ATQJ’U) Jtransformation time speedup (speedup) and end-to-end wall-clock time reduction ratio (A7, );

3 N denotes the number of extra gates;

4TQ1>U, RTsyp and RT'fyy denotes the quantum processing time, control sub-circuits transformation time and full circuit transformation time, respectively;

QUEKO [14]], a generation tool that can set circuit char-
acteristics (such as depth and gate density), and hardware
specifications from the IBM torino chip [49]]. Comprehensive

results are presented in Sections and Our key
findings include:

« In offline scenarios, our approach demonstrates signif-
icant quantum processing time Tgpy improvements,
achieving reductions of up to 46.2% with an average of
37.1%, where end-to-end wall-clock time Tgog consists
solely of the Typy of circuits.

« In online scenarios, our method outperforms baselines in
both effectiveness and efficiency, reducing T'rer by an
average of 59.2% (maximum 73.7%). Specifically, our
algorithm achieves a 2.6 x average speedup in transforma-
tion time while simultaneously reducing Tty piy by 30.0%.
In these settings, Trar comprises both Tgpy and trans-
formation time of controlled sub-circuits, highlighting our
algorithm’s adaptability to dynamic environments.

o The accelerated variant Sword-fast of our algorithm
exhibits substantial improvements in transformation effi-
ciency, achieving a 9.6x average speedup in transforma-
tion time compared to the standard implementation.

e As an improved mapping alignment algorithm, our
approach acc-Miltzow demonstrates significant en-
hancements in both solution quality (11.0% reduction
in average circuit depth) and computational efficiency
(56.4% reduction in computation time).

A. Methodology

Hardware Model: All experiments utilize the IBM torino
quantum chip, with data collected on April 5, 2025, which
only includes execution times for two-qubit gates. We set
the execution time of single-qubit gate to half the average
execution time of the corresponding two-qubit gates according
to a previous setting [50].

Dataset: Part of our benchmark circuits is from QASM-
Bench [48]], a widely used benchmark suite. We also generate
quantum circuits by QUEKO [14], which allows us to set
circuit parameters such as depth and gate density. The resulting
benchmark is both controllable and diverse: it covers dynamic
circuits with different depths, gate densities, and branching
structures, avoiding bias from relying on a single type of
circuit. This provides a more comprehensive validation of our
framework’s generality.
The generation procedure is as follows: For each circuit, we
specify the number of qubits (), the main circuit depth (D),
and the maximum controlled sub-circuits depth (d,d < D).
A total of k sub-circuits are randomly inserted into the main
circuit. Both the main circuit and controlled sub-circuits are
generated using QUEKO [[14]. When introducing control flow,
we randomly select classical registers corresponding to mea-
sured qubits and attach controlled sub-circuits. Additionally,
we assume that measured qubits remain available for sub-
sequent operations. The configurations of dynamic quantum
circuit are set as follows:
e Qubit count (n): 133 (matching IBM torino’s architec-
ture);
o Main circuit depths (D): 1000, 1500, and 2000;
o Sub-circuit depths (d): randomly sampled from 5 to D/5;
e Sub-circuit counts (k): 2, 3, and 4,
o Gate density vectors (distinct from our algorithm’s gate
density): (0.05, 0.2), (0.05, 0.1), and (0.1, 0.2) as defined
in QUEKO [14].
Evaluation Platform: Our experiments are performed on 2
Intel Xeon Platinum 8360Y @ 2.40GHz, with 1T DDR4
memory. The operating system is ubuntu 18.04.
Algorithm Configuration: We configure the parameters as
follows: the weight factor of extended layer(s) in heuristic
function wy; = 0.1, the weight factor of occupancy we = 1
(w2 = 0.1 when transforming controlled sub-circuits in online
scenarios), gate density threshold » = 0.25, and set the number



of layers of the extended layer(s) E to 1. In Sword-fast,
after sorting gates in the front layer F', we select the first 20%
gate into consideration (p = 0.2) and the top 50% rankings
candidate SWAPs. In online scenarios, we process main circuit
and controlled sub-circuits with Sword and Sword—-fast,
respectively.

Baselines: We use the SABRE algorithm [[17]] (as implemented
in IBM’s Qiskit [44]), which achieves a favorable balance
between effectiveness and efficiency, with 4-approximation
token swapping algorithm [27] as baseline. For the compar-
isons of quantum processing time and transformation time in
Section[IV-C] we also compare our methods with TOQM [15].
For both baseline and our method, the initial mapping is set
as trivial mapping.

Metrics: For offline scenarios, end-to-end wall-clock
time only consists of quantum processing time. We use
Ar,,, to denote the performance improvements, as
ATyyp = Argp, in this setting. We employ the quantum
processing time reduction ratio (A, ) and transformation
time speedup for controlled sub-circuits (speedup) to indicate
the improvements in effectiveness and efficiency of our
method. The specific formulas for calculating these ratios are
as follows:

ATQPU =1- TQPU(OUTS)/TQPU (Baseline), (4)
speedup = RTgp(Baseline)/ RT g, (Ours), (5)

a higher Ar,,, and speedup means a better performance.
For online scenarios, end-to-end wall-clock time consists of
quantum processing time and transformation time of controlled
sub-circuits RT,. We use Ar,,,. to denote the performance
improvements. For online scenario:

3 RTp(Ours) + Topu (Ours)
RT,(Baseline) + Tgpu (Baseline)’

Arg,, =1 (6)
in this setting, a higher Ar,,, means a better performance.
In our experiments, we assume all sub-circuits execute exactly
once (including loop sub-circuits). For the comparison of
mapping alignment algorithms, we consider depth as the
quality of solutions, which directly cor- responds to execution
time given uniform execution time of SWAP operations.

B. Experimental Results

Offline scenarios: Our approach demonstrates significant im-
provement in end-to-end wall-clock time compared to baseline
approaches, as shown in Table Specifically, it achieves
quantum processing time reductions of up to 46.2% with
an average reduction of 37.1%, where end-to-end wall-clock
time consists solely of quantum processing time. These results
validate our design objectives: by explicitly incorporating
both qubits’ occupancy and gate density characteristics into
the optimization process, our algorithm effectively prioritizes
routing paths that minimize execution time. Additionally, our
parallelism-promoting mapping alignment strategy contributes
substantially to these performance gains.

Online scenarios: Our method achieves quantum processing
time reductions of up to 45.6% with an average reduction

of 30.0%, while simultaneously accelerating controlled sub-
circuits transformation by up to 3.8 x with an average speedup
of 2.6x. Our optimization strategies yield an average end-to-
end wall-clock time reduction of 59.2%, reaching up to 73.7%
in maximum cases. These results demonstrate significant re-
ductions in end-to-end wall-clock time for online scenarios,
maintaining the quantum processing time advantages observed
in offline scenarios while adding substantial improvements in
transformation efficiency.

The results indicate that our method provides clear ad-
vantages in both execution time and compilation time, with
the cost of introducing additional gates. This arises because
our mapping strategy prioritizes shorter execution paths and
faster runtime over minimizing gate count alone. The trade-off
ultimately reduces the circuit’s effective execution time, which
is one of the key performance metrics in practical scenarios.

C. Sensitivity Analysis

Effectiveness Improvement: The comparative results, pre-
sented in Table demonstrate that Sword achieves a max-
imum quantum processing time reduction of 45.1% and an
average improvement of 33.7% over the baseline. Accelerated
version Sword-fast also performs well, with averagely
20.2% reduction in quantum processing time.

TABLE III: Comparison of quantum processing time for
mapping and routing algorithms.

Benchmark name Baseline TOQM Sword Sword-fast
Toru (ms)  Topy (ms) Topu (ms)  Ar,,, Topu (ms) Ag,p,
adder_n118 0.19 0.11 0.13 31.7% 0.13 29.2%
dnn_n33 0.03 0.03 0.03 6.9% 0.03 1.5%
multiplier_n75 1.44 1.20 1.24 13.6% 1.41 1.8%
qugan_nl11 0.15 0.13 0.10 30.9% 0.15 -2.6%
wstate_n118 0.07 0.03 0.04 34.8% 0.04 36.1%
QC10-S05-D10-K2 0.48 N/A 0.27 43.2% 0.40 16.1%
QC10-S05-D10-K3 0.53 N/A 0.31 41.7% 0.42 21.5%
QC10-S05-D20-K4 1.09 N/A 0.65 40.3% 0.81 25.7%
QC10-S10-D20-K3 1.07 N/A 0.64 39.9% 0.75 30.2%
QC15-S05-D10-K3 091 N/A 0.50 45.1% 0.69 23.4%
QC15-S10-D20-K3 1.36 N/A 0.88 35.4% 0.99 27.4%
QC20-S05-D10-K4 1.15 N/A 0.73 37.1% 0.96 16.7%
QC20-S05-D20-K4 1.81 N/A 1.15 36.6% 1.39 23.2%
QC20-S10-D20-K3 1.63 N/A 1.11 31.8% 1.24 23.8%
QC20-S10-D20-K4 1.73 N/A 1.09 37.0% 1.24 28.8%

N/A indicates that the mapper failed to produce a result within one hour.

We additionally investigate the impact of the weight factor
wy, as presented in Fig. [5a and Fig. [5b] The experimental
results reveal a trend that quantum processing time decreases
with increasing weight. This behavior likely stems from the
gradual suppression of the shortest-path heuristic’s dominance
by elevated weights, while simultaneously amplifying the ef-
fect of physical qubits’ occupancy. Such weighting shifts may
compromise the primary factor governing heuristic effective-
ness. Furthermore, increased weights correlate with prolonged
transformation time. As noted above, the reduced emphasis on
the shortest-path heuristic promotes the selection of circuitous
routes, thereby requiring more SWAP operations. Since our
method employs an iterative SWAP selection process, higher
weights necessarily increase the transformation time due to
the increased iterations.
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Fig. 5: Impact of the weight factor of occupancy wo and gate selection ratio p.

Efficiency Improvement: As shown in Table|lV| compared to
Baseline, Sword-fast achieves significant improvements in
transformation time. We employ the full transformation time
reduction ratio (Agry,,) to indicate the improvement. The
specific formula is:

=1— RTtuu(Sword-fast)/RT s (Baseline).
(N
Sword-fast demonstrates an average reduction of
14.1%, with a maximum of 40.5%. Compared to Sword,
Sword-fast achieves an average speedup of 9.6x. For
some benchmark circuits, Sword-fast exhibits longer trans-
formation times than the baseline. This occurs because al-
though our method reduces the number of candidate SWAP
to evaluate, it introduces additional computational overhead,
including occupancy of qubits calculations and sorting oper-
ations. The overall transformation time improvement reported
in Table [[I] incorporates optimizations from token swapping
acc-Miltzow as well.

ARTf wll

TABLE IV: Transformation time comparison for mapping and
routing algorithms.

Benchmark name Baseline TOQM Sword Sword-fast

RTpuu (ms)  RTpqu (ms)  RTpyy (ms)  RTypuy (ms)  Agry,,

adder_n118 1.87 5792.04 43.52 2.37 -27.0%
dnn_n33 0.21 4236.09 0.82 0.22 -2.8%
multiplier_n75 8.58 411595.00 55.30 6.06 29.4%
qugan_nl11 1.88 23712.80 9.76 1.01 46.3%
wstate_n118 0.42 821.05 0.93 0.30 29.1%
QC10-S05-D10-K2 47.71 N/A 388.28 39.48 17.4%
QC10-S05-D10-K3 59.05 N/A 319.20 36.44 38.3%
QC10-S05-D20-K4 95.13 N/A 855.92 89.91 5.5%
QC10-S10-D20-K3 103.33 N/A 810.32 90.39 12.5%
QC15-S05-D10-K3 89.57 N/A 635.74 5333 40.5%
QC15-S10-D20-K3 111.57 N/A 1145.79 115.78 -3.8%
QC20-S05-D10-K4 94.45 N/A 804.34 74.73 20.9%
QC20-S05-D20-K4 210.22 N/A 1618.72 165.87 21.1%
QC20-S10-D20-K3 132.08 N/A 1360.28 141.00 -6.8%

QC20-S10-D20-K4 135.08 N/A 1635.29 147.00 -8.8%

N/A indicates that the mapper failed to produce a result within one hour.

We also consider TOQM [15], a mapping algorithm that
directly minimizes circuit depth. While TOQM is effective for
small and medium scale circuits, it often needs significantly
more compilation time and does not scale well to larger (over
one hundred qubits and thousands of depth) quantum circuits.
Consequently, SABRE remains the primary baseline for online
execution due to its balance between compilation speed and
solution quality.

We further examine the effect of varying selection ratios

for gates in the sorted front layer F' (Figs. [5c| and [5d). The
results reveal a characteristic trade-off between selection ratio
and performance metrics. Specifically, higher selection ratios
yield improved quantum processing time but at the cost of
increased transformation time. This behavior stems from the
expanded candidate SWAP set associated with larger selection
ratios. Although this expansion may enhance the quality of
selected SWAP operations, it concurrently elevates the com-
putational overhead during each iteration’s SWAP evaluation
phase. Furthermore, as shown in Figs. [5c| and [5d] our results
suggests that only a subset of gates are performance-critical
during circuit transformation, as optimization efforts beyond
these key gates produce diminishing returns. These findings
empirically validate the effectiveness of our approach.
Token Swapping: We conduct a comprehensive evaluation of
the token swapping algorithm across multiple system scales.
Our test configurations employ qubit counts of 50, 100,
150, and 200, with each case generating a corresponding
random sparse graph (maintaining vertex degrees not over
4 and uniform edge weights). For each graph configuration,
we randomly generate 500 pairs of initial and target map-
pings, that compare the original token swapping algorithm
(denotes as Miltzow) [27] with our optimized approach
acc-Miltzow.

As shown in Fig. [6] our enhanced method achieves simul-
taneous reductions in both solution depth (which directly cor-
responds to execution time given uniform edge weights) and
computational time. Notably, these performance improvements
exhibit strong scaling characteristics, becoming increasingly
substantial with larger qubit counts. Our method achieves
an average reduction of 11.0% in depth, with a maximum
reduction of 13.2%. It also reduced solving time by up to
59.8%, with an average reduction of 56.4%.

V. CONCLUSION AND DISCUSSION

This work introduces a transforming and executing frame-
work designed for dynamic quantum circuits. To optimize
both quantum processing time and transformation time, we
propose three key strategies. Firstly, we design a mapping
and routing algorithm Sword, which achieves SWAP with
occupancy and gate regional density. Secondly, with analysis
of existing mappers, we provide Sword-fast, an accelerated
version of Sword, which significantly scales down the search
space, thereby reducing transformation time. Finally, we pro-
pose a modified mapping alignment algorithm, optimizing the
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Fig. 6: Impact of qubit number on solution depth and solving
time for token swapping.

transformation time and resulting circuit depth, based on a
4-approximation algorithm [27]. Numerical tests show that
our method significantly improves effectiveness and efficiency
for executing and transforming dynamic quantum circuits. For
offline scenarios, we reduce end-to-end wall-clock time by
an average of 37.1%, with a maximum reduction of 46.2%.
In online scenarios, our approach demonstrates a reduction
of end-to-end wall-clock time with an average of 59.2%.
Specifically, our method achieves an average acceleration of
2.6x in transformation time, while reducing quantum process-
ing time by 30.8% on average. Improved mapping alignment
acc-Miltzow also indicates a considerable reduction in
solving time and the resulting circuit depth.

ACKNOWLEDGMENTS

This work was partially supported by the Innovation Pro-
gram for Quantum Science and Technology (Grant No.
20217ZD0302901), and the National Natural Science Founda-
tion of China (Grant No. 62102388).

REFERENCES

[1] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, no. 6-7, pp. 467-488, 1982.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303-332, 1999.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212-219.

[4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and
A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390,
no. 6660, pp. 575-579, 1997.

[5] E. Bédumer, V. Tripathi, D. S. Wang, P. Rall, E. H. Chen, S. Majumder,
A. Seif, and Z. K. Minev, “Efficient long-range entanglement using
dynamic circuits,” PRX Quantum, vol. 5, no. 3, p. 030339, 2024.

[6] B. M. Terhal, “Quantum error correction for quantum memories,’
Reviews of Modern Physics, vol. 87, no. 2, pp. 307-346, 2015.

[7]1 R.Jozsa, “An introduction to measurement based quantum computation,”
NATO Science Series, III: Computer and Systems Sciences. Quantum
Information Processing-From Theory to Experiment, vol. 199, pp. 137—
158, 2006.

[8] E. Bdumer, V. Tripathi, A. Seif, D. Lidar, and D. S. Wang,
“Quantum fourier transform using dynamic circuits,” Phys. Rev.
Lett., vol. 133, p. 150602, 10 2024. [Online]. Available: https:
/Mink.aps.org/doi/10.1103/PhysRevLett.133.150602

[9] A. D. Coércoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev,
J. M. Chow, and J. M. Gambetta, “Exploiting dynamic quantum
circuits in a quantum algorithm with superconducting qubits,” Phys.
Rev. Lett.,, vol. 127, p. 100501, 8 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.127.10050 1

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

C. Cao and J. Eisert, “Measurement-driven quantum advantages in
shallow circuits,” arXiv preprint arXiv:2505.04705, 2025.

A. Carrera Vazquez, C. Tornow, D. Riste, S. Woerner, M. Takita, and
D. J. Egger, “Combining quantum processors with real-time classical
communication,” Nature, vol. 636, no. 8041, pp. 75-79, 2024.

R. S. Gupta, N. Sundaresan, T. Alexander, C. J. Wood, S. T. Merkel,
M. B. Healy, M. Hillenbrand, T. Jochym-O’Connor, J. R. Wootton, T. J.
Yoder et al., “Encoding a magic state with beyond break-even fidelity,”
Nature, vol. 625, no. 7994, pp. 259-263, 2024.

N. Yanakiev, N. Mertig, C. K. Long, and D. R. Arvidsson-Shukur,
“Dynamic adaptive quantum approximate optimization algorithm for
shallow, noise-resilient circuits,” Physical Review A, vol. 109, no. 3,
p. 032420, 2024.

B. Tan and J. Cong, “Optimality study of existing quantum computing
layout synthesis tools,” IEEE Transactions on Computers, vol. 70, no. 9,
pp. 1363-1373, 2020.

C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360-374.

H. Fu, M. Zhu, J. Wu, W. Xie, Z. Su, and X.-Y. Li, “Effective and
efficient qubit mapper,” in 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD). 1EEE, 2023, pp. 1-9.

G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001-1014.

M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira,
“Qubit allocation as a combination of subgraph isomorphism and token
swapping,” Proceedings of the ACM on Programming Languages, vol. 3,
no. OOPSLA, pp. 1-29, 2019.

A. Zulehner, S. Gasser, and R. Wille, “Exact global reordering for
nearest neighbor quantum circuits using a*,” in International conference
on reversible computation. Springer, 2017, pp. 185-201.

R. S. Gupta, E. Van Den Berg, M. Takita, D. Riste, K. Temme,
and A. Kandala, “Probabilistic error cancellation for dynamic quantum
circuits,” Physical Review A, vol. 109, no. 6, p. 062617, 2024.

M. Tuokkola, Y. Sunada, H. Kivijarvi, J. Albanese, L. Gronberg, J.-
P. Kaikkonen, V. Vesterinen, J. Govenius, and M. Méttonen, “Methods
to achieve near-millisecond energy relaxation and dephasing times for
a superconducting transmon qubit,” Nature Communications, vol. 16,
no. 1, p. 5421, 2025.

M. Bal, A. A. Murthy, S. Zhu, F. Crisa, X. You, Z. Huang, T. Roy,
J. Lee, D. v. Zanten, R. Pilipenko et al., “Systematic improvements in
transmon qubit coherence enabled by niobium surface encapsulation,”
npj Quantum Information, vol. 10, no. 1, p. 43, 2024.

S. Ganjam, Y. Wang, Y. Lu, A. Banerjee, C. U. Lei, L. Krayzman,
K. Kisslinger, C. Zhou, R. Li, Y. Jia et al., “Surpassing millisecond
coherence in on chip superconducting quantum memories by optimizing
materials and circuit design,” Nature Communications, vol. 15, no. 1, p.
3687, 2024.

Y. Salathé, P. Kurpiers, T. Karg, C. Lang, C. K. Andersen, A. Akin,
S. Krinner, C. Eichler, and A. Wallraff, “Low-latency digital signal
processing for feedback and feedforward in quantum computing and
communication,” Phys. Rev. Appl., vol. 9, p. 034011, 5 2018. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevApplied.9.034011

L. Caune, L. Skoric, N. S. Blunt, A. Ruban, J. McDaniel, J. A. Valery,
A. D. Patterson, A. V. Gramolin, J. Majaniemi, K. M. Barnes et al.,
“Demonstrating real-time and low-latency quantum error correction with
superconducting qubits,” arXiv preprint arXiv:2410.05202, 2024.

N. Fruitwala, G. Huang, Y. Xu, A. Rajagopala, A. Hashim, R. K.
Naik, K. Nowrouzi, D. I. Santiago, and I. Siddiqi, “Distributed archi-
tecture for fpga-based superconducting qubit control,” arXiv preprint
arXiv:2404.15260, 2024.

T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, and T. Uno,
“Approximation and hardness for token swapping,” arXiv preprint
arXiv:1602.05150, 2016.

W. Fang, M. Ying, and X. Wu, “Differentiable quantum programming
with unbounded loops,” ACM Transactions on Software Engineering and
Methodology, vol. 33, no. 1, pp. 1-63, 2023.

P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2020, pp. 1001-1016.

A. Molavi, A. Xu, M. Diges, L. Pick, S. Tannu, and A. Albarghouthi,
“Qubit mapping and routing via maxsat,” in 2022 55th IEEE/ACM


https://link.aps.org/doi/10.1103/PhysRevLett.133.150602
https://link.aps.org/doi/10.1103/PhysRevLett.133.150602
https://link.aps.org/doi/10.1103/PhysRevLett.127.100501
https://link.aps.org/doi/10.1103/PhysRevApplied.9.034011

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

International Symposium on Microarchitecture (MICRO). 1EEE, 2022,
pp. 1078-1091.

R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to ibm gx architectures using the minimal number of swap and h
operations,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). 1IEEE, 2019, pp. 1-6.

A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum
circuits to the ibm gx architectures. in 2018 design, automation test in
europe conference exhibition (date),” 2018.

A. Sinha, U. Azad, and H. Singh, “Qubit routing using graph neural
network aided monte carlo tree search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 9, 2022, pp. 9935-
9943.

M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins, “Using
reinforcement learning to perform qubit routing in quantum compilers,”
ACM Transactions on Quantum Computing, vol. 3, no. 2, pp. 1-25,
2022.

F. Wagner, A. Barmann, F. Liers, and M. Weissenbick, “Improving quan-
tum computation by optimized qubit routing,” Journal of Optimization
Theory and Applications, vol. 197, no. 3, pp. 1161-1194, 2023.

J. Liu, E. Younis, M. Weiden, P. Hovland, J. Kubiatowicz, and C. Iancu,
“Tackling the qubit mapping problem with permutation-aware synthe-
sis,” in 2023 IEEE International Conference on Quantum Computing
and Engineering (QCE), vol. 01, 2023, pp. 745-756.

C.-Y. Cheng, C.-Y. Yang, Y.-H. Kuo, R.-C. Wang, H.-C. Cheng, and
C.-Y. R. Huang, “Robust qubit mapping algorithm via double-source
optimal routing on large quantum circuits,” ACM Transactions on
Quantum Computing, vol. 5, no. 3, Sep. 2024. [Online]. Available:
https://doi.org/10.1145/3680291

S. Li, K. D. Nguyen, Z. Clare, and Y. Feng, “Single-qubit gates
matter for optimising quantum circuit depth in qubit mapping,” in
2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), 2023, pp. 1-9.

G. Padda, E. Tham, A. Brodutch, and D. Touchette, “Improving qubit
routing by using entanglement mediated remote gates,” in 2024 [EEE
International Conference on Quantum Computing and Engineering
(QCE), vol. 01, 2024, pp. 1770-1776.

C.-Y. Huang and W.-K. Mak, “Efficient qubit routing using a dynam-
ically extract-and-route framework,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 43, no. 10, pp.
2978-2989, 2024.

V. Saravanan and S. M. Saeed, “Noise adaptive quantum circuit mapping
using reinforcement learning and graph neural network,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 43, no. 5, pp. 1374-1386, 2024.

Y. Ji, X. Chen, I. Polian, and Y. Ban, “Algorithm-oriented
qubit mapping for variational quantum algorithms,” Phys. Rev.
Appl., vol. 23, p. 034022, 5 2025. [Online]. Available: https:
/Mink.aps.org/doi/10.1103/PhysRevApplied.23.034022

A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L. S. Bishop,
S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M. Gambetta et al.,
“Opengasm 3: A broader and deeper quantum assembly language,” ACM
Transactions on Quantum Computing, vol. 3, no. 3, pp. 1-50, 2022.
ibm. (2025) Ibm quantum computing. Accessed: 2025-04-13. [Online].
Available: https://www.ibm.com/quantum/qiskit

K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi,
Y. Okamoto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno, “Swapping
labeled tokens on graphs,” Theoretical Computer Science, vol. 586, pp.
81-94, 2015.

J. Kawahara, T. Saitoh, and R. Yoshinaka, “The time complexity of the
token swapping problem and its parallel variants,” in WALCOM: Algo-
rithms and Computation: 11th International Conference and Workshops,
WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings 11.
Springer, 2017, pp. 448-459.

R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, pp. 345-345, 1962.

A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-
level quantum benchmark suite for nisq evaluation and simulation,” ACM
Transactions on Quantum Computing, vol. 4, no. 2, pp. 1-26, 2023.
ibm. (2025) Ibm quantum platform. Accessed: 2025-04-5. [Online].
Available: https://quantum.ibm.com/

H. Deng, Y. Zhang, and Q. Li, “Codar: A contextual duration-aware
qubit mapping for various nisq devices,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC). 1EEE, 2020, pp. 1-6.

Fangzheng Chen received his B.S. degree in
Mechatronic Engineering from the Suzhou Univer-
sity, Suzhou, China, in 2022. He is currently a master
candidate at the School of Computer Science and
Technology, University of Science and Technology
of China, Hefei. His research interests include quan-
tum algorithms and quantum information theory.

Hao Fu received his Bachelor’s degree in Soft-
ware Engineering from Fuzhou University, China,
in 2017. He is currently pursuing his Ph.D. at the
University of Science and Technology of China.
His research interests include quantum architecture,
quantum circuit optimization, and quantum-classical
hybrid systems.

Mingzheng Zhu received her B.S. degree in Infor-
mation and Software Engineering from the Univer-
sity of Electronic Science and Technology of China,
Sichuan, China, in 2019. She is currently pursuing
a Ph.D. in Computer Science and Technology at
the University of Science and Technology of China,
Hefei. Her research interests focus on quantum error
correction and quantum architecture.

Chi Zhang is an associate professor in Hefei Uni-
versity of Technology. He received his B.S. de-
gree in Computer Science and Technology from
the University of Science and Technology of China
(USTC) with the honor of The Talent Program in
Computer and Information Science and Technology
in 2017 and got his Ph.D. degree in Computer
Science and Technology from USTC in 2023. He is
currently an associate professor at Hefei University
of Technology. His main research interests are data
center networking, cloud computing, and algorithms.

Wei Xie is an Associate Professor. He obtained
his Bachelor’s degree from Nanjing University in
2011, Master’s degree from Tsinghua University, in
2013 and Ph.D. from the University of Technology
Sydney in 2020. During his Ph.D. studies, he was
awarded the UTS President’s Scholarship (UTSP)
and the International Research Scholarship. In July
2020, he joined the School of Computer Science
and Technology at the University of Science and
Technology of China. His research interests pri-
marily focus on quantum computing and quantum
information. He has published several papers in renowned journals and
conferences such as IEEE TIT, PRA, Conference on QIP, QIC, IEEE ISIT,
and AQIS.

Xiang-Yang Li (Fellow, IEEE) is a full professor
and executive dean at the School of Computer Sci-
ence and Technology, USTC, Hefei, China. He was
a full professor at Illinois Institute of Technology,
Chicago, USA. He is an ACM/IEEE Fellow and an
ACM Distinguished Scientist. Dr. Li received an MS
(2000) and a PhD (2001) degree at the Department
of Computer Science from the University of Illinois
at Urbana-Champaign, a Bachelor’s degree at the
Department of Computer Science, and a Bachelor’s
degree at the Department of Business Management
from Tsinghua University, both in 1995. His research spans Artificial Intel-
ligent Internet of Things, mobile computing, data sharing and trading, and
privacy. He published a monograph “Wireless Ad Hoc and Sensor Networks:
Theory and Applications”.



https://doi.org/10.1145/3680291
https://link.aps.org/doi/10.1103/PhysRevApplied.23.034022
https://link.aps.org/doi/10.1103/PhysRevApplied.23.034022
https://www.ibm.com/quantum/qiskit
https://quantum.ibm.com/

	Introduction
	Preliminaries
	Quantum computing
	Problem formulation
	Related work

	System design
	Overall Framework
	Main algorithm
	Mapping and routing
	Transformation time reduction
	Mapping Alignment optimization


	Evaluation
	Methodology
	Experimental Results
	Sensitivity Analysis

	Conclusion and Discussion
	References
	Biographies
	Fangzheng Chen
	Hao Fu
	Mingzheng Zhu
	Chi Zhang
	Wei Xie
	Xiang-Yang Li


